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Abstract. An exponential correlated basis set is tested within the framework of multi-channel Schwinger
variational principle in the momentum space. It is found that inclusion of only the positron-electron corre-
lation in the basis set is enough to obtain accurate results for all significant partial waves for ground state
positronium formation in positron-hydrogen collisions at low and intermediate energies (6.856–75 eV). Re-
sults are in conformity with other accurate variational and non-variational calculations as well as observed
data available in the literature.

PACS. 34.85.+x Positron scattering – 36.10.Dr Positronium, muonium, muonic atoms and molecules

1 Introduction

Recently elastic positron collisions from hydrogen atoms
was successfully studied within the framework of
Schwinger variational principle by using an exponential
correlated basis [1,2]. In this paper, a similar type of ba-
sis is tested for positronium (Ps) formation in positron-
hydrogen collisions which is a fundamental rearrangement
collision process in a perfect three-body scattering system.

Since the pioneering work of Massey and Mohr in
1954 [3], this process has been studied by a variety of
methods with various degrees of sophistication and signif-
icant advancement has been made over the years [4–19].
In recent years the problem of Ps formation in positron-
hydrogen collisions has been investigated theoretically
with renewed interest. This interest has been stimulated
by the availability of experimental data of total reac-
tion cross section and Ps formation cross section for
e+−hydrogen collisions [20,21]. It is also of interest to
fully understand one of the simplest quantum mechanical
rearrangement collision processes.

At the low energy region there exist several variational
and non-variational calculations for this process. Mention
may be made of Kohn-Hulthen variational calculation of
Stein and Sternlicht [4], Humberston [5] and Brown and
Humberston [6], Harris-Nesbet algebraic method of Kuang
and Gien [7], algebraic ‘enlarged six-pseudostate’, calcu-
lation of Gien [8], 21-state close-coupling calculation of
Mitroy [15], Schwinger variational calculation of Roy and
Mandal [17] and Kar and Mandal [19]. Although these cal-
culations, except those of [19], are limited to a few partial
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waves, the results of these calculations for ground state Ps
formation at low incident energies agree nicely among one
another and probably these are the most accurate results
available in this energy region.

Significantly less attention has been paid to obtain re-
sults of comparable accuracy at the intermediate energies.
For intermediate energies of positron impact, particular
mention may be made of the calculations using the im-
pulse approximation [9], the distorted-wave approxima-
tions [10–12], Fock-Tani field-theoretic equations [13], the
R-matrix method [14], the coupled 33-state method [18],
the 28-state close coupling approximation method [15] and
the two-center convergent close-coupling approach of Bray
and Kadyrov [16].

Though a few non-variational results are known to be
available in the literature, there is still a scarcity of vari-
ational calculations at the intermediate energy region. In
order to fulfill this goal, we have made an endeavour in the
present calculation to obtain mainly an accurate estimate
of Ps formation cross section (both total and differential)
at the intermediate energy regime. While doing so, we
have also tested the accuracy of the present method at the
low incident energies where there are a large number of ac-
curate calculations (both variational and non-variational)
to compare with.

Of late, the multi-channel Schwinger’s variational
method has been used in the momentum space to study
the scattering of positrons by hydrogen atoms [17,19]. In
these works, inverse type correlation functions of the form

1
(a + br12)m0− 1

2
and

1
(a + br12 + cr1)m0− 1

2
(1)
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Fig. 1. Coordinate representation of positron-hydrogen
system.

have been utilized with respect to the coordinate system
as depicted in Figure 1 in the discrete basis set. Defini-
tive results have been obtained for ground state Ps for-
mation up to 150 eV of incident positron energy for all
significant partial waves using only 12 terms in the basis
set. These results are in conformity with other accurate
theoretical calculations [5,6,8] as well as experimental ob-
servations [20].

In this paper, our main objective is to establish that
accurate results for all partial waves at low as well as in-
termediate energies for Ps formation in positron-hydrogen
collisions can easily and elegantly be obtained using a
small discrete basis set within the framework of the SVP
which, since its inception by Schwinger [22], has been
widely utilised successfully in atomic, molecular and nu-
clear physics [1,23–35] (and further references given in [1]).
Analysing the optimised non-linear variational parameters
in the basis set we make some important conclusive re-
marks about the physical attributes of the Ps formation
mechanism. Our investigation endeavours to perform reli-
able predictions of the scattering parameters such as the
scattering amplitudes for all significant partial-waves and
total cross sections.

The plan of the paper is as follows. In Section 2 we
discuss the underlying theory of choosing the basis set.
Section 3 is devoted to the discussions of the results as
obtained by the present calculation. Finally in Section 4
we make our concluding remarks.

2 Theory

We choose correlated basis functions as follows:

um(�r1, �r2) = (−1)m−1ξm(�r1, �r2)Φi(�r1, �r2), m = 1, 2, 3, ...
(2)

vn(�r1, �r2) = (−1)n−1ξn(�r1, �r2)Φf (�r12, �s12), n = 1, 2, 3, ...
(3)

where the same correlation function ξm(�r1, �r2) is cho-
sen for both the incident (e+ + H) direct and the final
(Ps + H+) rearrangement channels:

ξm(�r1, �r2) = e−αmr1−βmr2−γmr12 , (4)

with α2m = p, α2m−1 = 0, and βm, γm, p, are non-linear
variational parameters to be optimised. Here Φi, Φf are

plane-wave states in the initial and final states respec-
tively, which are given by equations (6) and (7).

We have used the Schwinger variational amplitude in
the momentum space as obtained by Kar and Mandal [19]:

[A(L)
fi (kf , ki)] =

∑

m,n

∑

p,q

A
(L)
fm(kf , ki)D(L)(pq)

mn

−1
A

(L)
ni (kf , ki) (5)

which is a function of the scattering energies for any par-
tial wave L. Here A

(L)
fm(kf , ki), A

(L)
ni (kf , ki) are the in-

put two-body amplitudes and D
(L)(pq)
mn

−1
are the inverse

matrix elements of the double-scattering matrix D
(L)(pq)
mn .

The evaluation of the relevant amplitudes is shown in Ap-
pendix. These are obtained in closed analytic forms.

The largest value of m and n used in equation (5) is 4.
The correlated basis functions um, vn, along with ξm, ξn,
are not orthogonalised, they are square-integrable. Indeed
they satisfy the large-distance behaviour as is expected
of the scattering functions because of the presence of the
plane-wave states Φi, Φf in them. In fact, this choice of
basis functions has made our application of the SVP quite
distinctive from other applications in nuclear, atomic and
molecular physics.

The applicability of the present method will not be
jeopardized for large values of m, n so long as the choices
of the nonlinear exponents αj , βj , γj are distinct (j =
m, n; m, n = 1, 2, ..., N). No two rows or columns of the
double scattering matrix D will ever be the same to make
it singular. This has been carefully ensured in all of our
calculations using SVP.

Further, the method of optimization of the nonlinear
variational parameters in the present and earlier SVP cal-
culations is quite different from the conventional varia-
tional methods. While conventional variational calcula-
tions increase the number of basis functions to hundred
of terms using a single set values of the variational pa-
rameters, we have changed these nonlinear variational
exponents keeping the size of the basis set fixed (N =
4, 6, 8 or 10) to attain convergence. We have endeavoured
and succeeded in determining the best possible set of βj ,
γj for stationary Schwinger amplitudes over a range of the
variational parameter, p. This poor man’s method works
wonderfully for the accurate determination of the scatter-
ing parameters in positron-atom collisions and is easily
manageable even on a IBM-compatible Pentium IV PC.

For the present calculation we have set βm = 0. Opti-
mization of the scattering amplitude can then be achieved
very conveniently by varying the other non-linear varia-
tional parameters. It was found that only γm had signif-
icant contribution compared to other two parameters. It
may be a manifestation of the small number of terms in
basis expansion. We can physically explain the reasons
behind such a nature of the dependence on parameters in
our basis as follows.

The basic interaction responsible for a transition in the
internal state of the atom is the positron-electron correla-
tion. In other words, if the positron-electron interaction is
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turned off, the internal state of the atom will remain unal-
tered. The only effect of the positron-proton interaction is
to deflect the incident positron. Since the mass of the pro-
ton is very large compared to that of the positron and the
electron (1836:1), this deflection is of appreciable measure
for low incident positron energy and consequently indi-
rectly influences the internal structure of the atom. But
with the increase in the incident positron energies this
effect gradually slows down and hardly affects the prob-
ability of transition of the internal state of the atom in
the intermediate and high energies. Thus βm = 0 in our
calculation signifies that the change in the electronic coor-
dinate is largely due to the positron-electron correlation.
As the positron and the bound electron are very much
lighter than the proton, the positron comes very near to
the electron, binds with the electron and goes away.

One of the highlights of our present calculation is that,
only four terms of the exponential basis function are re-
quired to predict accurate amplitudes and cross sections
for all significant partial-waves at incident energies in the
range 6.8558–75 eV. This has been made possible by the
existence of infinite order position-electron correlation in
the exponent of the basis set. The beauty of the expo-
nential basis set is that the exponential function prop-
erly combines each power of r12 to produce essentially ex-
act positron-electron correlation. We noticed similar effect
while constructing normal two-electron bound state wave
function for helium and its isoelectronic sequence [36]. In
that case we observed that the exponential trial functions
were better than inverse type trial functions in the sense
that the exponential basis set yields better results with in
less number of terms than with the inverse type functions.

3 Results and discussion

We have evaluated the stationary scattering amplitude (5)
using correlated basis functions (2) and have optimised the
non-linear variational parameters p and γm, m = 1, 2, 3, 4
generating random numbers using Monte-Carlo optimiza-
tion technique. One of the interesting points of our calcu-
lation is the technique for optimizing the non-linear vari-
ational parameters p and γm, m = 1, 2, 3, 4. For a given
value of the variational parameters γm, m = 1, 2, 3, 4 p is
varied within a certain finite range, say, [0.0, 2.0] to seek
the stationary values of [A(L)

fi (kf , ki)]. We have set γ1 = γ2

and γ3 = γ4 in conformity with the choice of αm to have a
hold over the process of optimization. It has been further
found that if digits after the decimal point of the varia-
tional parameters γ3 = γ4 are put one unit lower than the
digits after the decimal point of the variational parameters
γ1 = γ2 a systematic method makes the optimization pro-
cess convenient. Of course, there are other stray values of
the variational parameters which optimize the amplitude
[A(L)

fi (kf , ki)] to essentially obtain the same number.
It has been found that the stationary amplitudes are

remarkably stable for each partial wave. These, along with
the corresponding variational parameters are shown in
Table 2 for the partial-waves l = 0, 2, 5 at the incident

Fig. 2. Variation of optimised γ1 with energy (eV) for S-wave.

positron energies 9.826 eV and 25 eV respectively. In Fig-
ure 2 we have plotted γ1 as a function of energy for S-wave.
This figure shows that γ1 first increases a little bit and
then decreases systematically with higher energies as ex-
pected. This fact is an important information regarding
the relation of positron-electron correlation with Ps for-
mation.

3.1 Positronium formation in the Ore gap
(6.8–10.2 eV)

We have obtained results for the ground state Ps forma-
tion cross section at low-energies of positron impact in
the Ore gap for S-, P-, D- and higher partial-waves up
to L = 14. These values are highly accurate and com-
pare nicely with those obtained by the Kohn-Hulthen
variational methods [5,6] for S-, P-, D- waves as well as
Schwinger variational method [19] for all partial-waves.
In Table 1 we display our results along with those avail-
able in the literature [5–8,15]. The present values are in
satisfactory agreement with the Harris-Nesbet algebraic
method calculation of Kuang and Gien [7], algebraic ‘en-
larged six-pseudo-state’ calculation of Gien [8], 21-state
close-coupling calculation of Mitroy [15], etc.

This may fairly lead to the conclusion that the problem
of Ps formation in positron-hydrogen collisions is consid-
ered to be solved in the Ore gap to a fair degree of accu-
racy.

3.2 Positronium formation beyond Ore gap

We have presented in Table 3 our present results along
with the findings of Kar and Mandal [19] for the positron
energy beyond Ore gap. There are no significant dif-
ferences in the results obtained by using two different
basis sets. The over-all close agreement between these
Schwinger variational calculations and other theoretical
methods emphasizes further the accuracy of the present
findings.
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Table 1. Partial-wave ground-state Ps formation cross sections (in units of πa2
0) for positron-hydrogen scattering at energies

in the Ore gap. The numbers in square brackets indicate powers of 10.

ki (a.u.) 0.71 0.75 0.8 0.85

l = 0

Present 0.416[−2] 0.443[−2] 0.492[−2] 0.579[−2]

Variational (a) 0.41[−2] 0.44[−2] 0.49[−2] 0.58[−2]

Harris-Nesbet (b) 0.404[−2] 0.441[−2] 0.493[−2] 0.549[−2]

Algebraic E6PS (c) 0.404[−2] 0.426[−2] 0.480[−2] 0.550[−2]

21-state (d) 0.405[−2] 0.427[−2] 0.472[−2] 0.560[−2]

l = 1

Present 0.268[−1] 0.367 0.475 0.566

Variational (a) 0.27[−1] 0.365 0.482 0.561

Harris-Nesbet (b) 0.267[−1] 0.367 0.483 0.565

Algebraic E6PS (c) 0.267[−1] 0.366 0.483 0.564

21-state (d) 0.266[−1] 0.366 0.483 0.563

l = 2

Present 0.624[−3] 0.336 0.828 1.058

Variational (a) 0.62[−3] 0.335 0.812 1.057

Harris-Nesbet (b) 0.683[−3] 0.320 0.862 1.162

Algebraic E6PS (c) 0.683[−3] 0.321 0.860 1.158

21-state (d) 0.682[−3] 0.320 0.859 1.158

l = 3

Present 0.468[−5] 0.356[−1] 0.272 0.597

Variational (e) 0.444[−5] 0.355[−1] 0.272 0.593

Harris-Nesbet (b) 0.500[−5] 0.354[−1] 0.271 0.596

Algebraic E6PS (c) 0.445[−5] 0.357[−1] 0.271 0.595

21-state (d) 0.44[−5] 0.356[−1] 0.270 0.596

l = 4

Present 0.205[−2] 0.543[−1] 0.203

Variational (e) 0.202[−2] 0.556[−1] 0.201

l = 5

Present 0.562[−4] 0.453[−2] 0.256[−1]

Variational (e) 0.725[−4] 0.431[−2] 0.231[−1]

Total cross section

Present 0.316[−1] 0.744 1.639 2.458

Variational (e) 0.315[−1] 0.741 1.631 2.449

Harris-Nesbet (b) 0.315[−1] 0.729 1.666 2.499

Algebraic E6PS (c) 0.314[−1] 0.730 1.663 2.492

21-state (d) 0.313[−1] 0.728 1.660 2.49

(a) Variational calculation, Humberston [5], Brown and Humberston [6]; (b) Harris-Nesbet algebraic method, Kuang and Gien [7];
(c) Algebraic ‘enlarged six-pseudostate’, Gien [8]; (d) 21-state close-coupling, Mitroy [15]; (e) Schwinger variational, Kar and
Mandal [19].

3.3 Comparison with experiment

In Figure 3, we display the total cross section for ground-
state Ps formation in positron-hydrogen collisions as pre-
dicted by the present calculations, the Schwinger varia-
tional calculations of Kar and Mandal [19], the 33-state
calculation of Kernoghan et al. [18], the observed data
of Zhou et al. [20] and Weber et al. [21] in the energy-
range 6.8–75.0 eV. There is good accord between both the
Schwinger results and the 33-state calculation [18] over
the whole energy region for which results are available.
Though the observed data of Weber et al. are a little bit
higher than our results, the data of Zhou et al. are in
favourable agreement with our theoretical predictions in

shape and magnitudes at all energies. As a matter of fact
the observed data of Zhou et al. are found consistently to
be in better agreement with theory. In the words of Zhou
et al. [20], ‘...we expect our “This work” results to be the
most reliable indicators of the actual QPs... It is very en-
couraging to see the very good agreement of the present
QPs measurements with the recent coupled 33-state cal-
culation of Kernoghan et al. [...] and the 21-state close-
coupling approximation calculation of Mitroy [...] and with
the most of the other theoretical calculations [...]’.

Inclusion of excited-state contributions though small
will however enhance the present values to a certain
extent. It is to be noted that the figure for total cross
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Table 2. The steady range of amplitudes and cross sections for the incident positron energy 9.826 eV and 25 eV respectively.
The numbers in square brackets indicate powers of 10.

E = 9.826 eV E = 25 eV

l = 0
(γ1 = γ2 = 1.4955, γ3 = γ4 = 1.3844) (γ1 = γ2 = 1.2264, γ3 = γ4 = 1.1153)

amplitude cross amplitude cross
p real imaginary section p real imaginary section
1.0 0.457[−1] 0.213[−2] 0.0058 1.0 0.402[−1] −0.568[−3] 0.0018

1.1 0.457[−1] 0.213[−2] 0.0058 1.1 0.402[−1] −0.570[−3] 0.0018
1.2 0.457[−1] 0.213[−2] 0.0058 1.2 0.402[−1] −0.571[−3] 0.0018
1.3 0.457[−1] 0.212[−2] 0.0058 1.3 0.402[−1] −0.573[−3] 0.0018
1.4 0.457[−1] 0.212[−2] 0.0058 1.4 0.402[−1] −0.574[−3] 0.0018

1.5 0.457[−1] 0.212[−2] 0.0058 1.5 0.402[−1] −0.576[−3] 0.0018

l = 2

(γ1 = γ2 = 0.3567, γ3 = γ4 = 0.2456) (γ1 = γ2 = 0.5135, γ3 = γ4 = 0.4024)

amplitude cross amplitude cross
p real imaginary section p real imaginary section

0.7 0.277 0.100[−1] 1.058 0.7 0.3501 0.142[−1] 0.668
0.8 0.276 0.101[−1] 1.058 0.8 0.3501 0.142[−1] 0.669
0.9 0.276 0.101[−1] 1.058 0.9 0.3501 0.142[−1] 0.669

1.0 0.276 0.101[−1] 1.058 1.0 0.3501 0.143[−1] 0.669
1.1 0.276 0.101[−1] 1.058 1.1 0.3501 0.142[−1] 0.669
1.2 0.276 0.100[−1] 1.058 1.2 0.3501 0.142[−1] 0.669

l = 5
(γ1 = γ2 = 0.1612, γ3 = γ4 = 0.0501) (γ1 = γ2 = 0.4408, γ3 = γ4 = 0.3297)

amplitude cross amplitude cross
p real imaginary section p real imaginary section
1.0 0.290[−1] 0.306[−2] 0.0256 0.6 0.1324 0.182[−2] 0.2099
1.1 0.290[−1] 0.322[−2] 0.0257 0.7 0.1324 0.182[−2] 0.2099

1.2 0.290[−1] 0.326[−2] 0.0257 0.8 0.1324 0.182[−2] 0.2099
1.3 0.291[−1] 0.351[−2] 0.0257 0.9 0.1324 0.182[−2] 0.2099
1.4 0.291[−1] 0.356[−2] 0.0258 1.0 0.1324 0.182[−2] 0.2099
1.5 0.291[−1] 0.341[−2] 0.0256 1.1 0.1324 0.182[−2] 0.2100

section, Figure 3, resembles to the figure for the correla-
tion parameter γ1, Figure 2.

4 Conclusions

Multi-channel Schwinger’s variational principle has con-
veniently and elegantly been used in momentum space to
study the Ps formation in positron-hydrogen scattering
at low and intermediately energies. Our expression of the
scattering amplitude is simple and easy to interpret. In
the absence of any minimum principle the method uses
the stationary property of the scattering amplitude. So
the choice of the basis set should be judicious in order to
incorporate the essential features of the underlying sys-
tem.

Our present study of ground state Ps formation in
positron-hydrogen collisions uses an exponential corre-
lated discrete basis set in both the elastic and rearrange-
ment channels. Inclusion of only the positron-electron cor-
relation in the basis set for Schwinger variational principle
is enough to obtain accurate results for ground state Ps
formation in positron-hydrogen collisions.

Appendix A: Evaluation of two-body
amplitudes for Ps formation
in positron-hydrogen collisions

In what follows we have used the basis set (2) to calculate
the two-body amplitudes defined in Section 2 of this pa-
per. We show how these amplitudes are obtained in closed
forms for an efficient evaluation.

In coordinate representation (Fig. 1), we have

Φi(�r1, �r2) = ei�ki·�r1φi(�r2) (6)

Φf (�r12, �s12) = ei�kf ·�s12ηf (�r12) (7)

where (φi(�r2), ηf (�r12)) denote (H, Ps) bound-states and
(h�ki, h�kf ), the momenta of the incident positron and out-
going Ps, respectively. For ground state Ps formation in
positron-H collisions, we have:

φi(�r2) = Nie
−λir2 , (8)

ηf (�r12) = Nfe−λf r12 , (9)

where Ni =
√

λ3
i

π , Nf =
√

λ3
f

π , λf = λi

2 , λi = 1
a0

(a.u.).
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Table 3. The present partial-wave contributions to the ground-state Ps formation cross sections (in units of πa2
0) in positron-

hydrogen collisions at energies in the energy range 10.2–75 eV. The numbers in square brackets indicate powers of 10.

Energy (eV)
l 10.2 12.0 13.6 25.0 35.0 50.0 75.0
0 a 0.0064 0.0072 0.0084 0.0018 0.0004 0.0032 0.0009

b 0.0064 0.0075 0.0084
1 a 0.6082 0.6696 0.6545 0.1678 0.726[−1] 0.492[−1] 0.177[−1]

b 0.606 0.674 0.652
2 a 1.0953 1.3690 1.3583 0.6690 0.2054 0.857[−1] 0.239[−1]

b 1.102 1.352 1.377
3 a 0.6386 0.6605 0.6406 0.4980 0.2367 0.904[−1] 0.282[−1]

b 0.633 0.664 0.718
4 a 0.2455 0.3803 0.4071 0.3779 0.2292 0.829[−1] 0.227[−1]

b 0.243 0.383 0.404
5 a 0.387[−1] 0.1348 0.1876 0.2099 0.1464 0.777[−1] 0.184[−1]

b 0.374[−1] 0.132 0.190
6 a 0.433[−2] 0.217[−1] 0.394[−1] 0.1020 0.785[−1] 0.430[−1] 0.171[−1]

b 0.440[−2] 0.217[−1] 0.384[−1]
7 a 0.513[−3] 0.327[−2] 0.701[−2] 0.431[−1] 0.419[−1] 0.284[−1] 0.122[−1]

b 0.509[−3] 0.355[−2] 0.864[−2]
8 a 0.658[−4] 0.505[−3] 0.132[−2] 0.177[−1] 0.202[−1] 0.133[−1] 0.109[−1]

b 0.705[−4] 0.589[−3] 0.183[−2]
9 a 0.828[−4] 0.246[−3] 0.570[−2] 0.938[−2] 0.721[−2] 0.549[−2]
10 a 0.450[−4] 0.275[−2] 0.409[−2] 0.367[−2] 0.264[−2]
11 a 0.939[−3] 0.160[−2] 0.191[−2] 0.126[−2]
12 a 0.320[−3] 0.724[−3] 0.891[−3] 0.509[−3]
13 a 0.106[−3] 0.322[−3] 0.415[−3] 0.203[−3]
14 a 0.339[−4] 0.122[−3] 0.181[−3] 0.796[−4]
Total a 2.6377 3.2468 3.3046 2.0972 1.0477 0.4880 0.1622
Total b 2.636 3.239 3.399

a: Present results, b: Schwinger’s variational results of Kar and Mandal [19].

Fig. 3. Total Ps formation cross
section (πa2

0) as a function of
energy (eV) in the energy range
6.8557–75 eV for the reaction
e+ + H(1s) → P(1s) + H+. (�)
Present result; (•) Schwinger
variational result of Kar and
Mandal [19]; (�) 33-state
approximation of Kernoghan
et al. [18]; (�) experimental
data of Zhou et al. [20]; (⊕)
experimental data of Weber
et al. [21].
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A.1 Anm(�kf,�ki)

The amplitude Anm(�kf , �ki) is thus obtained as:

Anm(�kf , �ki) =
(
−µf

2π

)
〈vn|Vf |um〉

=
(
−µf

2π

) ∫
v∗nVfumd�r1d�r2 (10)

which on using the expression for v∗n, um and Vf = 1/r1−
1/r2 becomes

Anm(�kf , �ki) =
(
−µf

2π

)
(−1)n+m−2NiN

∗
f

×
∫

ei�v1·�r1+i�v2·�r2−αnmr1−βnmr2−γnmr12

(
1
r1

− 1
r2

)
d�r1d�r2

=
(
−µf

2π

)
(−1)n+m−2NiN

∗
f [I1 − I2] (say) (11)

where αnm = αn + αm, βnm = βn + βm + λi, γnm =
γn + γm + λf , �v1 = �ki − �kf

2 and �v2 = −�kf

2 .
Now taking Fourier integral transforms for functions

of the form exp(−λr)/r, exp(−λr):

exp(−λr)/r =
1

2π2

∫
ei�p·�r

p2 + λ2
d�p (12)

exp(−λr) =
λ

π2

∫
ei�p·�r

(p2 + λ2)2
d�p (13)

and utilised the δ-function properties, such as,
∫

ei(�q− �∆)·�rf(�q)d�qd�r = (2π)3
∫

δ(�q − �∆)f(�q)d�q

= (2π)3f( �∆). (14)

we get

I1 =
∫

ei�v1·�r1+i�v2·�r2−αnmr1−βnmr2−γnmr12
1
r1

d�r1d�r2

= 32βnmγnm

×
∫

d�p

(p2 + α2
nm)(|�p + �v1 + �v2|2 + β2

nm)2(|�p + �v1|2 + γ2
nm)2

= 32π2βnmγnmL122(αnm; �∆1, βnm; �∆2, γnm) (15)

where we have used the Dalitz’s integral as defined by
relation

Llmn(δ; �v1, λ1; �v2, λ2) =
1
π2

×
∫

d�p

(p2 + δ2)l(|�p − �v1|2 + λ2
1)m(|�p − �v2|2 + λ2

2)n
(16)

and set �∆1 = �v1 + �v2 = �ki − �kf ; �∆2 = �v1 = �ki − �ki

2 .
Our simple prescription to evaluate such Dalitz’s integral
effectively and efficiently has been described in [12].

In a similar fashion we obtain

I2 =
∫

ei�v1·�r1+i�v2·�r2−αnmr1−βnmr2−γnmr12
1
r2

d�r1d�r2

= 32βnmγnm

×
∫

d�p

(p2 + α2
nm)(|�p + �v1 + �v2|2 + β2

nm)2(|�p + �v1|2 + γ2
nm)2

= 32π2αnmγnmL212(αnm; �∆1, βnm; �∆2, γnm). (17)

Using the expressions (15) and (17) of I1 and I2 in the
expression (11) of Anm(�kf , �ki) we finally obtain

Anm(�kf , �ki) = C
[
βnmL122(αnm; �∆1, βnm; �∆2, γnm)

− αnmL212(αnm; �∆1, βnm; �∆2, γnm)
]

(18)

where C =
(−µf

2π

)
(−1)n+mNiN

∗
f 32π2γnm.

A.2 Ani(�kf,�ki)

The amplitude Ani(�kf , �ki) is given by:

Ani(�kf , �ki) =
(
−µf

2π

)
〈vn|Vf |φi〉

=
(
−µf

2π

) ∫
v∗nVfΦid�r1d�r2 (19)

which on using the expression for v∗n, Φi and Vf = 1/r1 −
1/r2 becomes

Anm(�kf , �ki) =
(
−µf

2π

)
(−1)n−1NiN

∗
f

×
∫

ei�v1·�r1+i�v2·�r2−αnr1−β1r2−γ1r12

(
1
r1

− 1
r2

)
d�r1d�r2

=
(
−µf

2π

)
(−1)n−1NiN

∗
f [I1 − I2] (say) (20)

where β1 = βn + λi, γ1 = γn + λf , �v1 = �ki − �kf

2 and

�v2 = −�kf

2 .
Applying the same technique as above we get

Ani(�kf , �ki) = C1

[
β1L122(αn; �∆1, β1; �∆2, γ1)

−αnL212(αn; �∆1, β1; �∆2, γ1)
]

(21)

where C1 =
(−µf

2π

)
(−1)n−1NiN

∗
f 32π2γ1.

A.3 Afm(�kf,�ki)

As in previous two cases the Afm(�kf , �ki) amplitude can
be obtained as:

Afm(�kf , �ki) = C2

[
β2L122(αm; �∆1, β2; �∆2, γ2)

− αmL212(αm; �∆1, β2; �∆2, γ2)
]

(22)
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where C2 =
(−µf

2π

)
(−1)m−1Ni.N

∗
f 32π2γ2, β2 = βm + λi,

γ2 = γm + λf , �v1 = �ki − �kf

2 and �v2 = −�kf

2 .
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